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Diego Luis González and Gabriel Téllez

Departamento de Fı́sica, Universidad de Los Andes A A 4976 Bogotá, Colombia
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Abstract
We study numerically the crossover between organized and disorganized states
of three non-equilibrium systems: the Poisson/coalesce random walk (PCRW),
a one-dimensional spin system and a quasi one-dimensional lattice gas. In all
cases, we describe this crossover in terms of the average spacing between
particles/domain borders 〈S(t)〉 and the spacing distribution functions p(n)(s).
The nature of the crossover is not the same for all systems; however, we
found that for all systems the nearest neighbor distribution p(0)(s) is well fitted
by the Berry–Robnik model. The destruction of the level repulsion in the
crossover between organized and disorganized states is present in all systems.
Additionally, we found that the correlations between domains in the gas and
spin systems are not strong and can be neglected in a first approximation, but
for the PCRW the correlations between particles must be taken into account.
To find p(n)(s) with n > 1, we propose two different analytical models based
on the Berry–Robnik model. Our models give us a good approximation for the
statistical behavior of these systems at their crossover and allow us to quantify
the degree of order/disorder of the system.

PACS numbers: 05.40.Fb, 05.50.+q, 45.70.Vn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many one-dimensional non-equilibrium systems exhibit a crossover between disorganized and
organized states. This crossover usually depends on the value of one or more parameters which
set the system in one of these states. Our main objective is to study the statistical behavior of
three non-equilibrium systems at their crossovers between organized and disorganized states.
The first system is the Poisson/coalesce random walk (PCRW) where the particles describe
independent random walks and when two particles meet they coalesce with probability k,
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otherwise they interchange their positions. The second system is a quasi one-dimensional gas,
where the particles interact only by volume exclusion in the presence of an external field. The
last system is a one-dimensional spin lattice, where the particles interact by a coupling force
J in the presence of an external driving field.

We propose two analytical models for the spacing distribution functions of these systems
and compare them with the numerical results from the simulation. Our analytical models are
based on the Berry–Robnik model introduced in [1]. This model is used in quantum systems
which are neither integrable nor fully chaotic in order to find an analytical approximation to
the nearest neighbor distribution of the energy levels of the system, see [1–3]. The Berry–
Robnik model depends on one parameter which controls the crossover. The crossover is
described through the nearest neighbor distribution p(0)(s), which gives us the probability that
the distance between two consecutive levels is s. We complement the model proposed in [1]
calculating analytically the higher order spacing distribution functions p(n)(s) for n > 0 and
the pair correlation function g(r) by two methods.

This paper is organized as follows. Because of its importance, in section 2 we explain
in detail the Berry–Robnik model. In sections 3–5, we test our analytical models with three
non-equilibrium systems: the Poisson/coalesce random walk, the quasi one-dimensional gas
and the one-dimensional spin lattice, respectively. These systems are also explained in those
sections.

2. The Berry–Robnik model as a non-equilibrium system

We consider a continuous one-dimensional ring with two kinds of particles A and B and
normalized densities ρA and ρB , respectively. The particles A are subject to the reaction
A + A → A, i.e., they are coalescing random walkers. Particles B describe independent
random walks and they are subject to the reaction B → 0. The amount of particles B that
disappear is calculated in such a way that the number of particles A, NA, and the number of
particles B, NB , satisfy the relation NB/NA = constant at each time step. This is the only
interaction between both species of particles.

For this system, P (n)(S, t) is the probability that the distance between two particles is S at
time t under the condition that between these particles there are n additional particles. When
the average distance between neighbor particles is much smaller than the size of the lattice, the
system exhibits a dynamical scaling for all values of ρA and ρB . In this regime, the spacing
distributions can be scaled by using the variable change s = S(t)/〈S(t)〉. Then, we obtain the
time-independent spacing distributions p(n)(s).

It is known that in the scaling regime NA = L/(2πDt)1/2 where D is the diffusion
constant and L is the size of the lattice, see [4] for more information about the coalescing
random walk (CRW). It is straightforward to show that NB = NAρB/(1−ρB), then the average
length between nearest neighbors satisfies 〈S(t)〉 = (1 − ρB)(2πDt)1/2.

The interaction between species warrants that the quotient between normalized densities
ρA and ρB is always constant, i.e., the rate of disappearance of particles B is proportional to
the rate of disappearance of particles A and the proportionality constant is ρB/ρA. Taking
this into account, in the scaling regime, the system is the uncorrelated superposition of two
independent systems of particles A and B with constant normalized densities. Our objective
is to calculate the nearest neighbor distribution p(0)(s) of the whole system. This can easily
be done because we have the superposition of two uncorrelated distribution functions p

(0)
i (s)

which satisfies

〈si〉 =
∫ ∞

0
ds sp

(0)
i (s) = 1

ρi

(1)

2



J. Phys. A: Math. Theor. 42 (2009) 195001 D L González and G Téllez

and ∫ ∞

0
ds p

(0)
i (s) = 1, (2)

where i = A or B and ρi is the density of particles corresponding to the system A or B. As is
natural, the normalized densities satisfy ρA + ρB = 1.

Let E(1)(s) be the probability to choose randomly an empty segment of length s. This
probability is related to p(0)(s). In order to prove this, we consider the probability that there
are no particles in the interval q to q + r , given that there is a particle at q. This probability is
given by

∫ ∞
r

p(0)(x) dx.
In our case, we have the uncorrelated superposition of two kinds of particles, then we can

write∫ ∞

r

p(0)(x) dx = ρAqB(r)

∫ ∞

r

p
(0)
A (y) dy + ρBqA(r)

∫ ∞

r

p
(0)
B (y) dy, (3)

where, for example, ρA is the probability that the particle in position q belongs to the system A,∫ ∞
r

p
(0)
A (x) dx and qB(r) are the probabilities that there are no particles of the systems A and

B in the interval, respectively. In order to find qB(r), we choose a particle randomly, the
probability that the chosen point q lies within a gap of length σ to σ + dσ is proportional
to σp

(0)
B (σ ). To normalize this equation we use the fact that 〈sB〉 = 1/ρB , obtaining the

probability distribution ρB dσ σp
(0)
B (σ ). Now, the probability that the distance to the next

particle is r, given that the point is in the gap of length σ , is zero if σ < r and 1/σ if
1 � r � σ . The probability of not having a particle of the system B in an interval of length r
is (1 − r/σ )θ(σ − r) (θ is the unit step function).

Thus, the unconditional probability that the distance until the next particle is r is given by

qB(r) = ρB

∫ ∞

r

p
(0)
B (σ )(σ − r) dσ. (4)

The same argument can be made for the second term of equation (3). Thus equation (3) takes
the form∫ ∞

r

p(0)(x) dx = ρA

∫ ∞

r

p
(0)
A (y) dy ρB

∫ ∞

r

p
(0)
B (σ )(σ − r) dσ

+ ρB

∫ ∞

r

p
(0)
B (y) dy ρA

∫ ∞

r

p
(0)
A (σ )(σ − r) dσ. (5)

The probability E(1)(s) is the probability that r > s, then integrating equation (5) over r we
find

E(1)(s) =
∫ ∞

s

dr

∫ ∞

r

dx p(0)(x) = ρAE
(1)
A (s)ρBE

(1)
B (s), (6)

where we define

E
(1)
i (s) =

∫ ∞

s

dσ p
(0)
i (σ )(σ − s) =

∫ ∞

s

dσ

∫ ∞

σ

dx p
(0)
i (x). (7)

From equation (6), the spacing distribution function p(0)(s), which is the result of the mix of
systems A and B, is given by

p(0)(s) = d2E(1)(s)

ds2
. (8)

The fact that E(1)(s) is given by the product of E
(1)
i (s) functions is natural, because we

used two statistical independent sequences. It is easy to prove that the E
(1)
i (s) functions satisfy

E
(1)
i (0) = 1

ρi

(9)

3
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and

dE
(1)
i (0)

ds
= −1. (10)

From the above equations it follows that p(0)(0) is given by

p(0)(0) = 1 + ρA

(
p

(0)
A (0) − ρA

)
+ ρB

(
p

(0)
B (0) − ρB

)
. (11)

Then, even if p
(0)
A (0) = 0 and p

(0)
B (0) = 0 it can happen that p(0)(0) �= 0. In our particular

case, we superpose one Wigner distribution

p(0)(s, ρA) = π

2
ρ2

As exp
[
−π

4
ρ2

As2
]

(12)

with density ρA and one Poisson distribution

p(0)(s, ρB) = ρB exp[−ρBs] (13)

with density ρB , then we have

p(0)(s, q) = e−qs

(
q2erfc

(√
π

2
(1 − q)s

)
+

(
2q(1 − q) +

π

2
(1 − q)3s

)
e− π

4 (1−q)2s2

)
, (14)

where ρB ≡ q is the density of the Poisson sequence, ρA = 1 − q is the one for the Wigner
sequence and erfc(z) is the complementary Gaussian error function. Note that equation
(14) reduces to the Poisson distribution for q = 1, and for q = 0 it reduces to the Wigner
distribution. This result is well known in random matrix theory and corresponds to the
Berry–Robnik model for the crossover between chaotic and non-chaotic behavior in quantum
systems; see [1].

2.1. Higher spacing distribution functions

In [5, 6] the authors show that the nearest neighbor distribution is not enough to describe the
complete statistical behavior of a non-equilibrium system, because several different systems
could share the same nearest neighbor distribution. Because of this, we generalize the Berry–
Robnik model for higher spacing distribution functions. Let E(n)(x1, y1, . . . , xn, yn) be the
joint probability that the intervals [xi, yi] (i = 1, 2, . . . , n) are empty. The intervals are non-
overlapping and ordered, x1 < y1 < · · · < xn < yn. Because of the independent superposition
nature of the Berry–Robnik model, E(n)(x1, y1, . . . , xn, yn) can be written as

E(n)(x1, y1, . . . , xn, yn) = ρn
AE

(n)
A (x1, y1, . . . , xn, yn)ρ

n
BE

(n)
B (x1, y1, . . . , xn, yn), (15)

where E
(n)
A (x1, y1, . . . , xn, yn) and E

(n)
B (x1, y1, . . . , xn, yn) are the joint probabilities for

particles A and B, respectively. The authors of [7] showed that spacing distribution functions
p(n)(s) can be calculated from equation (15); let us summarize their most important result.
Let p(n)(s) be the probability that given one particle its (n + 1)th neighbor is at a distance s.
From its definition p(n)(s) is given by

p(n)(s) =
∫

0<y1<···<yn<s

ω(n+2)(0, y1, . . . , yn, s) dy1 · · · dyn, (16)

with

ω(n)(x1, . . . , xn) = −∂nE(n−1)(x1, y1, . . . , xn−1, yn−1)

∂x1 · · · ∂xn−1∂yn−1

∣∣∣∣
y1=x2,...,yn−1=xn

. (17)

On the other hand, it is well known that for the CRW, E
(n)
A (x1, y1, . . . , xn, yn) is given

by [4]

E
(n)
A (x1, y1, . . . , xn, yn) =

∑
p

σpE
(1)
A (z1,p, z2,p) · · · E(1)

A (z2n−1,p, z2n,p), (18)

4
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where z1,p, z2,p, . . . , z2n,p symbolizes an ordered permutation, p, of the variables x1, y1, . . . ,

xn, yn, such that

z1,p < z2,p, z3,p < z4,p, . . . , z2n−1,p < z2n,p, (19)

z1,p < z3,p < z5,p < · · · < z2n−1,p. (20)

In equation (18), σp is the signature of the permutation, i.e., σp = 1 for even permutations and
σp = −1 for odd permutations.

The function E
(1)
A (x1, y1) is the probability that from x1 to y1 the lattice is empty. Then

it is possible to generate the complete solution for the CRW from E
(1)
A (x1, y1), which is given

by the solution of the diffusion equation under the suitable boundary conditions (see [4]). In
fact, the exact expression for this function is

E
(1)
A (x1, y1) = 1

ρA

erfc

(√
πρA

2
(y1 − x1)

)
, (21)

for additional information see [4, 8]. The particles B describe independent random walks,
then we have

E
(1)
B (x1, y1) = 1

ρB

e−ρB(y1−x1) (22)

and

E
(n)
B (x1, y1, . . . , xn, yn) =

n∏
i=1

1

ρn
B

e−ρB(yi−xi ). (23)

From equations (15), (18), (21) and (23) we can calculate E(n)(x1, y1, . . . , xn, yn) for the
whole system and then we can use (16) and (17) to calculate p(n)(s). By using this formalism
it is also possible to calculate the n-point correlation function

ρ(n)(x1, . . . , xn) = (−1)n
∂n

∂y1 · · · ∂yn

E(n)(x1, y1, . . . , xn, yn)|y1=x1,...,yn=xn
, (24)

in fact, the pair correlation function is given by

g(r) = 1 − (1 − q)2 e− π
2 (1−q)2r2

+
π

2
e− π

4 (1−q)2r2
(1 − q)3r erfc

(√
π

2
(1 − q)r

)
. (25)

The above equation takes the form g(r) = 1 for q = 1. For q = 0 we recover the pair
correlation function of the CRW; see [4].

3. A simple model of the crossover between organized and disorganized states: the
Poisson/coalesce random walk

Consider a one-dimensional ring with L sites and np particles, then the particle density is given
by ρ = np/L. The particles describe independent random walks and when two particles meet
they coalesce with probability k, otherwise they interchange their positions. This system was
studied previously in [9, 10]. The algorithm used in the simulation is as follows:

(1) np particles are randomly inserted in an L site lattice.
(2) A particle is chosen at random.
(3) The particle can move to the left or to the right with the same probability. If the particle

is moved to an occupied site, the particles coalesce with probability k or they interchange
their positions with probability 1 − k.

(4) In a time unit all particles are moved.

5
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In the limit t 	 1, finite systems reach a non-equilibrium steady state (NESS), where
there is only one particle which executes a simple random walk and 〈S(t)〉 = L. As we will
see soon, for an infinite-size system in the same limit, the average length between nearest
neighbor particles grows as t1/2 for k > 0 and the system is statistically equivalent to the
CRW.

It is possible to derive an approximate analytical solution by using the inter-particle
distribution function method (IPDF), see [4, 9]. Let En be the probability to find an empty
segment of length n in the lattice. The master equation for En can be written as

∂En(t)

∂t
= 2D

�x2
(En+1(t) − 2En(t) + En−1(t)) +

2D

�x2
(k − 1)P (

n−1︷ ︸︸ ︷◦ · · · ◦ ••), (26)

with boundary conditions E0(t) = 1 and E∞(t) = 0. The probability P(

n−1︷ ︸︸ ︷◦ · · · ◦ ••) cannot be
written in terms of En(t). However in [4, 9] the authors propose an approximation for this
probability

P(

n−1︷ ︸︸ ︷◦ · · · ◦ ••) ≈ P(

n−1︷ ︸︸ ︷◦ · · · ◦ •)P (••)
P (•)

, (27)

which can be written in terms of En(t) as

P(

n−1︷ ︸︸ ︷◦ · · · ◦ ••) ≈ (1 − 2E1 + E2)(En−1 − En)

1 − E1
. (28)

This approximation allows us to calculate the concentration of particles c(t) = 1/〈S(t)〉. From
equations (26) and (28) and summing over the index n it is easy to find

∞∑
n=1

∂En(t)

∂t
= 2D

�x2
(E0(t) − E1(t)) − 2D

�x2
(1 − k)

(1 − 2E1(t) + E2(t))

1 − E1(t)
E0(t). (29)

Taking into account that ∂tE1(t) = 2Dk(1 − 2E1 + E2)/�x2 and making the approximation∑∞
n=1 En(t) ≈ (2/π)/(1 − E1(t)), in [9] it is found that

2

π

d

dτ

(
1

c(τ )

)
= c(τ ) +

(1 − k)

kc(τ )

dc(τ )

dτ
, (30)

where τ = 2Dt/�x2 and c(τ ) = 1 − E1(τ ). Equation (30) can be integrated obtaining

c(τ ) = 2c2
0k

c2
0(k − 1)π +

√
c2

0(−2k + c0(k − 1)π)2 + 4c4
0k

2πτ

, (31)

with c0 ≡ c(0). Note that for τ → ∞, we have c(τ ) ∝ τ−1/2 as we mentioned above.
In figure 1, we show the behavior of 〈S(t)〉 = 1/c(τ ) for different values of k, this
result was first shown in [9]. The agreement between equation (31) and the simulation is
very good. Because of the finite-size effects in the simulation, for L = 500, the system
does not reach β = 1/2, 〈S(t)〉 ∝ tβ , but for L = 10000 we can see this regime for
k = 1, k = 0.25, k = 0.02 and k = 0.01. For low values of k, the time during which the
system remains disorganized with 〈S(t)〉 almost constant is larger than for large values of k.

The nearest neighbor distribution p(0)(s) evolves in the following way. The system starts
in a disorganized state in such a way that p(0)(s) is described by the Poisson distribution, then
for k �= 0 the system evolves and p(0)(s) is deformed continuously until it reaches the Wigner
distribution, for large systems. For small systems, the finite-size effects appear before this

6
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Figure 1. Behavior of 〈S〉 as a function of t. In the simulation, we took two lattices with L = 10000
(filled symbols) and L = 500 (empty symbols) over 500 realizations. In both cases, the initial
density was 1/4. The continuous line represents equation (31).

regime is attained, i.e., small systems reach the NESS without reaching the scaling regime. In
the k = 0 case, the system remains disorganized for all values of t.

In the continuum limit, equation (26) takes the form

∂E(1)(x, t)

∂t
= 2D

∂2E(1)(x, t)

∂x2
+ 2D(k − 1)

∂E(1)(x, t)

∂x

∂2E(1)(x,t)

∂x2

∣∣
x=0

∂E(1)(x,t)

∂x

∣∣
x=0

, (32)

with boundary conditions E(1)(0, t) = 1 and E(1)(∞, t) = 0. This equation can easily be
solved for k = 1. For arbitrary values of k, equation (32) cannot be solved exactly; however,
some approximate expressions were found in [4, 9, 10], but they involve self-consistent
forms which are difficult to handle. Motivated by this fact, we propose to use the Berry–
Robnik model to find an approximate analytical solution to the statistical behavior of this
system.

Equation (14) provides a good fit for the crossover in this reaction–diffusion model during
its time evolution as we can see in figure 2. For the nearest neighbor distribution, the fit is
almost perfect for low and high values of s, but for intermediate values we can see little
differences in the interval 0.25 < s < 1 for intermediate values of k. In this figure, all data
were taken at different times with k = 0.05 over 20000 realizations, the initial density was
0.1. The fit parameter is q. We found the appropriate value of q by using the numerical results
for p(0)(s), equation (14) and the minimum square criteria1.

The higher spacing distributions have been calculated with two methods. In the first one,
we use our extension for the original Berry–Robnik equation (15) with equation (16). From
now on, we call it the generalized Berry–Robnik (GBR) model. For the second one, we
use equation (14) with the independent interval approximation (IIA). We call this method the
Berry–Robnik+IIA (BR+IIA) model. In the IIA approximation, the entire statistical behavior
of the system is described by the nearest neighbor distribution p(0)(s) and the joint probability

1 This can also be done for values of k near to 1 or long times by using the numerical value of p(0)(0) obtained from
the simulation and taking into account that p(0)(0) = 2q − q2 for the Berry–Robnik model.

7
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(a) (b)

(c) (d )

(e) ( f )

Figure 2. Crossover between the Poisson and the Wigner distribution for the PCRW, for k = 0.05,
for various times t. The continuous line corresponds to the BR+IIA model, the dashed line
corresponds to the GBR model and the square dots correspond to the simulation.

to find the particles in positions x1, . . . , xN can be written as the product of independent
products of the N nearest neighbor distributions,

PN(x1, . . . , xN) = 1

ZN

p(0)(x2 − x1) · · · p(0)(xN − xN−1)p
(0)(x1 + L − xN), (33)

where the partition function ZN is the normalization constant

ZN =
∫

x1<x2<···<xN <x1+L

dx1, . . . , dxN

N∏
i=1

p(0)(xi+1 − xi). (34)

In the IIA approximation, the correlations among intervals [x1, x2], . . . , [xN−1, xN ] are
neglected; for a review of this method see [5]. As is natural, the generalized Berry–Robnik

8
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model and the Berry–Robnik+IIA model are equivalent in the limit q → 1 because in this
regime those correlations are not strong and can be neglected.

In general, for the PCRW the fits are better for the GBR model than the BR+IIA. This
means that for this system the information contained in p(0)(s) is not enough to describe
the entire statistical behavior of the system, i.e., the correlation among intervals cannot be
neglected as is done in the BR+IIA model. These correlations can be neglected only for
small times (τ � τ1), when the particles do not coalesce enough to build strong correlations
between them. The value of τ1 as a function of k can be computed from equation (30) as
follows. Integrating equation (30), it is easy to find

τ = 1 − k

k
(〈S(τ)〉 − 〈S(0)〉) +

1

π
(〈S(τ)〉2 − 〈S(0)〉2). (35)

Because of the reaction between particles, 〈S(τ)〉 grows in time for k > 0 making it possible
to write 〈S(τ)〉 as 〈S(0)〉 plus an increment 〈�S〉. In this way, equation (35) takes the form

τ = 1 − k

k
〈�S〉 +

1

π
〈�S〉2 +

2

π
〈�S〉〈S(0)〉. (36)

The correlations between particles can be neglected for small times when 〈�S〉  1, then we
can neglect 〈�S〉2 in equation (36). Finally if we consider that 〈�S〉 must be a fraction ε of
〈S(0)〉, we find

τ1 = ε

(
1 − k

k
〈S(0)〉 +

2

π
〈S(0)〉2

)
. (37)

This equation was derived first in [9]. From equation (37), it is clear that there is a time when
the interaction between particles goes unnoticed even in the case of k = 1, where τ1 is the
typical time that one particle needs to reach one of its nearest neighbors. In the limit k → 0,
we have τ1 → ∞ as is natural because in this case 〈S(τ)〉 is a constant.

We conclude that for the PCRW the spacing distribution and the pair correlation functions
can be approximated from the uncorrelated superposition of a Poisson and a Wigner distribution
function as is proposed in the GBR model.

An alternate way to analyze the crossover of this system is to study the spacing distribution
functions at a fixed given time, but for different values of k. In order to establish a connection
between this picture for the transition and that shown in figure 2, it is necessary to find the
correct combination of k and τ which gives the same statistical behavior for different values
of these parameters. To find it, in figure 3(a) we show the behavior of q as a function of τ for
different values of k. We found that making the change of variable

τ̃ = τk2/(1 − k)2, (38)

all lines shown in figure 3(a) collapse into a single one; see figure 3(b). Then, different
combinations of k and τ with fixed τk2/(1 − k)2 give the same statistical behavior, i.e., give
the same value for the fit parameter q. This is shown in figure 4; the data were taken in all
cases over 20000 realizations with τk2/(1 − k)2 ≈ 13.9. For large values of τ̃ , τ̃ 	 1, we
found that q ∝ τ̃−0.5 and for low values of τ̃ , τ̃  1, q ∝ τ̃−0.25.

The physical meaning of the change of variable (38) is clear if we introduce the crossover
time, τ2, between the intermediate regime (which starts when τ > τ1) and the long-time
regime (when k renormalizes to 1). This time is estimated in [9], by expanding equation (31)
in powers of 1/

√
τ ,

τ2 ∝ (1 − k)2

k2
, (39)

which is precisely the scaling factor used in figure 3(b). The change of variable (38) is
τ̃ = τ/τ2.
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(a) (b)

Figure 3. Behavior of the fit parameter q as a function of t for different values of k.

Figure 4. Statistical behavior for the PCRW for different values of k and t with τk2/(1−k)2 ≈ 13.9,
in all cases q ≈ 0.112.

4. Crossover in the quasi one-dimensional gas system

This system was originally studied in [11]. There, the authors studied the biased diffusion of
two species in a fully periodic 2 × L rectangular lattice half filled with two types of particles
labeled by their charge, there are L/2 particles with charge + and L/2 particles with charge
−. An infinite external field drives the two species in opposite directions along the x-axis (the
long axis). The only interaction between particles is an excluded volume constraint, i.e., each
lattice site can be occupied by only one particle. The system evolves in time according to the
following dynamical rules:

(1) L particles are randomly inserted in a 2 × L rectangular lattice, L
2 particles (+) and L

2
particles (−), the remaining sites are empty. Periodic boundary conditions are imposed
in both directions of the lattice. Let the x-axis be the long axis of length L.

(2) Two neighbor sites are chosen at random. The contents of the sites are exchanged with
probability 1 if the neighbor sites are particle–hole, but if they are particle–particle the
contents are exchanged with probability γ . The exchanges which result in +/− particles
moving in the positive/negative x-direction are forbidden due to the action of the external
field.

(3) A time unit corresponds to 2L attempts at exchange.

10



J. Phys. A: Math. Theor. 42 (2009) 195001 D L González and G Téllez

(a)

(b)

(c)

(d)

(e)

Figure 5. Typical configurations for the gas system in the NESS, for different values of γ from
the same initial configuration. (a) Initial configuration, (b) γ = 0.1, (c) γ = 0.3, (d) γ = 0.5 and
(e) γ = 1 for t = 10000.

With these dynamical rules, this system evolves with formation of domains for low values
of γ ; see figures 5(b) and (c). In this regime, the average length of domains grows in time
and while the size of the domains remains much smaller than the total size L of the system,
the domain-size distribution exhibits a dynamic scaling. In the long-time limit, the system
reaches a non-equilibrium steady state (NESS) where there is only one macroscopic domain.
The length of the macroscopic domain depends on γ , for example, for γ = 0.1. it has an
approximate size of L/2. Additionally, for low values of γ , this macroscopic domain does not
have a simple charge distribution and it almost contains no holes. The macroscopic domain
is not in equilibrium because there are particles (travelers) which leak out from one end
of this domain and travel along the lattice until they reach the other end of this domain; see
figure 5(b). In the case of large values of γ the system remains homogeneous, i.e., disorganized
without domain formation, as we can see in figure 5(e). For intermediate values of γ , the
macroscopic domain is not well formed, it has many holes and it is unstable. In this case,
there are many travelers and small length domains; see figure 5(d).

In order to obtain quantitative results, we measure the length of a domain by using the
coarse-grained approximation (CG) defined in [11]. This approximation allows us to map
the quasi one-dimensional lattice into a one-dimensional lattice. For any configuration on the
2 × L lattice, we construct an effective one-dimensional one, with occupation numbers 0 or 1
on an L site line, as follows. At each site i, we assign 0 if there are five or less particles in the
ten sites around it, including the ith column of the original lattice. We assign 1 otherwise, then
we assign 1 in the ith site of the one-dimensional lattice if there are more particles than holes
in the ten sites around the ith column in the original lattice2. In this simplified description,
a domain is a simple consecutive sequence of ones and its size is just the length of this
string.

In figure 6, we show the behavior of 〈S(t)〉 for six values of γ . The NESS behavior is
evident in the long-time limit, when 〈S(t)〉 reaches its maximum value which depends on γ .
Additionally, we found that in the NESS regime 〈S(t)〉 also depends on the size of the lattice

2 In our description, we take only four neighbor lines around the ith column, two at the left and two at the right.
This choice is arbitrary, however the results are not so sensitive to it. If we take less neighbor lines, we improve the
measure of the small domains getting worse the measure of big domains and vice versa. Our choice of four neighbor
lines gives us a reasonable measure of small and big domains.
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Figure 6. Behavior of 〈S(t)〉 for different values of γ , the dashed line is a reference line with slope
0.6. We used L = 1000.

Figure 7. Average length of domains 〈S(t)〉 in the NESS regime for different values of L.

L for all values of γ , in fact for γ = 0.1 it is well known that 〈S(t)〉 ≈ L/2. In figure 7,
we show 〈S(t)〉 for γ = 0.5 and different values of L. The value of 〈S(t)〉 increases with the
value of L and we can expect that it reaches its maximum value in the limit L → ∞ . We can
conclude that for finite systems 〈S(t)〉, in the NESS, depends on γ and L.

For γ = 0.1, we found in the scaling regime 〈S(t)〉 ∝ t0.6, this result coincides with
that found in [11]. For lower values of γ it seems that there is also a dynamical scaling
region whose size decreases when γ increases. Naturally, for γ = 1 the systems remain
homogeneous. Note that 〈S(t)〉 is very different for γ = 0.1 and γ = 0.3 cases, because for
γ = 0.3 there are more travelers than in γ = 0.1; see figure 5.

In figure 8, we show the spacing distribution and the pair correlation functions for the gas
system for different values of γ . As can be expected, the CG description is not appropriate to
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(a) (b)

(c) (d)

(e)

Figure 8. Crossover for the gas system. The continuous line corresponds to the BR+IIA model,
the dashed line corresponds to the GBR model and the square dots correspond to the simulation.

measure the length of small domains. However, this method allows us to measure the length
of big domains. For all values of γ , the nearest neighbor spacing distribution function is well
fitted by the Berry–Robnik model for high values of s. For small values of γ, p(0)(s) is well
described by the Wigner distribution. In the case of γ = 1, the nearest neighbor distribution is
described by the Poisson distribution. However, the generalized Berry–Robnik model does not
describe the next spacing distributions nor the pair correlation function with enough precision.
The differences between the pure coalescing random walk (PCRW for k = 1) and the gas
system were already studied in [5] for the case of γ = 0.1. There the authors found that the
independent interval approximation (IIA) is a better model for the gas system than the CRW
model. The results that we found for the Berry–Robnik+IIA model are shown in figure 8. We
can see that the Berry–Robnik+IIA model is a better approximation for the statistical behavior

13



J. Phys. A: Math. Theor. 42 (2009) 195001 D L González and G Téllez

Figure 9. Behavior of q in the gas system for different values of γ .

of the gas for all values of γ . This fact suggests that, as it happens for γ = 1, the domains in
this system are not strongly correlated for all values of γ and because of that those correlations
can be neglected.

In figure 9, we show the behavior of q as a function of γ in the interval [0.1, 0.35]. We
found that at least for γ > 0.4 the system is in a disorganized state, i.e., its statistical behavior
is well described by the Poisson distribution for large values of s and fits give q ≈ 1. In all
fits used to find q as a function of γ we eliminated the regions where the points are highly
dispersed, i.e., where the coarse-grain method does not measure the length of domains with
enough precision.

The numerical results shown in figures 8 and 9 were obtained using a 2 × 1000 lattice
over 20000 realizations, the data were taken at three different times t = 2000, t = 3000 and
t = 4000. The results shown in figure 6 were obtained by using the same lattice over 500
realizations.

5. Crossover in the spin system

This system was originally introduced in [12]. There, the authors consider a lattice of length
L with Lμ spins up (‘+’) and L(1 − μ) spins down (‘−’) with 0 < μ < 1. Periodic boundary
conditions are imposed. The spin–flip events are as follows:

(1) + + −− ↔ + − + − � = 4J − E.
(2) − − + + ↔ − + − + � = 4J + E.
(3) + + − + ↔ + − + + � = −E.
(4) − + −− ↔ − − + − � = −E.

The transition probability rate for a process from left to right is e− �
T for � > 0 and 1

for � � 0. The constant J is the nearest neighbor coupling between spins, E is the energy
associated with an external field which drives the up (‘+’) spins to the right and the down (‘−’)
spins to the left, and T is the thermal energy (temperature times Boltzmann constant).

In [12], the authors restrict their study to the regime T  E  J . In this regime, the
microscopic dynamics of the lattice of spins may be mapped into one for an array domain
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(a)

(b)

(c)

(d)

(e)

Figure 10. Typical configurations for the spin system in the NESS for different values of J from
the same initial configuration. (a) Initial configuration, (b) J = 2, (c) J = 1.5, (d) J = 1 and
(e) J = 0.1. We use L = 50, μ = 0.5 and t = 100000.

dynamics, which provides a good approximation in this regime; for more information see
[5, 6, 8, 12, 13]. With this macroscopic description in [5], the authors show that this system
has statistical behavior very similar to that of the gas system. Additionally, the system
exhibits dynamical scaling behavior and, in the long-time limit, the system reaches the NESS,
where there are two macroscopic domains which move in opposite directions. However, this
domain model does not allow us to study the crossover of the system between organized and
disorganized states because it is valid only in the regime T  E  J . To study the crossover
regime, we must use the microscopic dynamical rules listed above. In all simulations, we took
E = 1 and T = 1.

In figure 10(b), we can see the asymptotic state for the spin system for large values of J

where there are only two stable macroscopic domains and 〈S(t)〉 = L/2. For J = 0.1, domain
formation is not perceptible; see figure 10(e) which is almost identical to the disorganized
initial state figure 10(a). However, as we will see soon, the average length of domains is
different in both cases. In the NESS, for low values of J there is domain destruction and
formation, in such a way that 〈S(t)〉 is constant with a value lower than L/2. As we can see in
figure 11, for low values of J , the statistical behavior of the spin system in the NESS is well
described by the Poisson distribution. This means that the system remains in a disorganized
state where the average length of domains is bigger than the initial one (〈S(0)〉 = 2). We can
see slight differences near s = 0, this happens because we used in our simulation a discrete
finite lattice.

In figure 12, we can see the average length of domains 〈S(t)〉 as a function of time t.
In this case, the behavior of 〈S(t)〉 is different from that found in the PCRW and in the gas
system. For large values of J , the spin system reaches metastable states where 〈S(t)〉 is
almost constant. Note that in all cases, the metastable state starts when the domain density is
1/4, i.e., when the system, in the statistical average sense, is filled with domains of the form
+ + − − + + −−. This is a consequence of the microscopical dynamical rules that we use,
because they take into account interaction among four neighboring spins. For large enough
values of J , these domains have a low probability of destruction setting the system into a
metastable state. In figure 13, we show the spacing distribution function in the metastable
states, level repulsion is present. After some time, 〈S(t)〉 starts to grow again in time. In
the PCRW and in the gas systems, the metastable states are not present. Once the metastable
states end, the domain formation in the system continues in such a way that the average size of
domains increases again. The length in time of these metastable states depends on the value
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Figure 11. Spacing distribution function in the NESS for J = 1. We took data of three different
times t/L = 10, 100, 1000 with L = 200.

Figure 12. Average length for different values of J . Open symbols: L = 100 and filled symbols:
L = 200. In the inset we compare J = 0 and J = 0.1 for L = 200 in order to verify the domain
formation for small values of J .

of J (with E = T = 1). In fact for J = 1 this region is absent but for bigger values of J

its size increases. Nevertheless, 〈S(t)〉 does not seem to depend on the length of the system
in the scaling regime, it is the same for L = 100, 200, 500, the differences arise near to the
NESS naturally3. In figure 12, for J = 2, the system seems to reach another metastable state
where 〈S(t)〉 ≈ 40 for N = 200 and 〈S(t)〉 ≈ 30 for N = 100. For J = 2, the scaling region
has a considerable duration but this duration is smaller for lower values of J . From figure 12,
it is evident that the value of 〈S(t)〉 in the NESS regime depends on the size of the system, as

3 The case L = 500 was verified but is not included in the figure.
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Figure 13. Statistical behavior of the metastable state in the spin system for J = 2. We took data
at three different times: T/L = 10, 20, 30.

also happens in the gas system. In the inset of figure 12, we compare 〈S(t)〉 for J = 0 and
J = 0.1, in the last case there is domain formation and it seems that only for J = 0 is there
no domain formation.

As also happens in the gas system, the statistical behavior of this model is better described
by the Berry–Robnik+IIA than the generalized Berry–Robnik model. In figure 14, we show
the statistical behavior of the system for different values of J . For J = 0, the system evolves
in time remaining disorganized, as we expected. However, we cannot compare directly its
spacing distributions with our analytical model because of the effects of the discrete finite
lattice that we use in our simulations. In fact, as we can see in figure 14, p(0)(1/2) = 1
instead of p(0)(0) = 1 as predicted by the continuous Poisson distribution. This result can be
understood if we remember that, in a lattice, the lowest value for which the nearest spacing
distribution is defined is s = ρ(t), with ρ(t) being the density of particles. In our case,
ρ(t) = 1/2 for J = 0 in each spin species. This technical problem is usually solved taking
low-density values as we did in the PCRW, where we took ρ(0) = 1/10. However, we
cannot do this in the spin system. We have to take small lattices because the simulation is
very intensive and low densities give us a poor statistic. This is only a technical problem
and we can be sure that in the limit of low densities and small values of J , the system is
well described by the continuous Poisson distribution. To corroborate this, we compare the
results of our simulation for J = 0 with the discrete version of the Poisson distribution
(p(0)(s) = (1/2)2s−1, p(1)(s) = (2s − 1)(1/2)2s−1, etc).

For J = 2 the system sets into an organized state where there is domain formation. In
this case, p(0)(s) is well fitted by the Wigner distribution. For J = 2, the results of our
microscopic simulation coincide with the results of the macroscopic array domain simulation
in the regime T  E  J . For intermediate values, the system shows a mixed state. If
we do not take into account the discrete finite lattice, for all values of J, p(n)(s) is well
described by the Berry–Robnik+IIA model. This suggests that for this system the correlations
between domains are not strong as happens in the gas system. For low densities and values
of J near 1, we expect that the generalized Berry–Robnik and the Berry–Robnik+IIA model
are a good approximation for higher spacing distribution functions (n > 1) and for the
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(a) (b)

(c) (d)

Figure 14. Crossover for the spin system.

pair correlation function because in this regime the correlation between domains can be
neglected.

In our numerical simulations we took μ = 0.5 and 2000 realizations. The measures
were taken at different times using two lattices: L = 500 and L = 200, in order to confirm
the scaling property. For J = 2, we took t/L = 10000 and t/L = 4000 for L = 500 and
L = 200. For J = 1.75, we took t/L = 9000 for L = 500 and t/L = 6000, 7500, 9000
for L = 200. For J = 1.5, we took t/L = 2000 for L = 500 and t/L = 1500, 2000 for
L = 200. For J = 0, the system remains disorganized and the time when the data are taken
is irrelevant.

6. Conclusion

In all systems considered in this paper, the original Berry–Robnik model gives us a good fit for
the nearest neighbor distribution p(0)(s), i.e., p(0)(s) can be approximated by the uncorrelated
superposition of one Wigner and one Poisson distribution function. The biggest differences
in the fits are given when the densities of both sequences have similar values. We calculate
the next spacing distribution functions by using two methods: the GBR and the BR+IIA. We
found that the GBR model gives us a good approximation for the statistical behavior of the
PCRW and the BR+IIA model is a good approximation for the gas and spin systems. This fact
suggests that the correlations between domains in the gas and spin systems are not strong and
can be neglected in a first approximation but in the PCRW the correlations between particles
cannot be neglected.
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Our analytical models are simple and allow us to have a quantitative measure of the
degree of order/disorder of the systems through the parameter q. For q = 1 the system is
completely disordered and p(0)(s) is described by the Poisson distribution, this means that the
system is homogeneous, in the statistical average sense. For q = 0 the system is organized
and p(0)(s) is described by the Wigner distribution. In the particular case of the PCRW
q = 0 implies that there is an effective repulsion between particles and in the case of the
gas and spin systems it means domain formation. Unfortunately, the information about the
interaction between particles/domains cannot be extracted easily from the statistical behavior
in non-equilibrium systems. However, by using the BR+IIA model it is possible to calculate
in an approximate way the interaction potential between domain borders for the gas and spin
systems, as follows. Comparing (33) with a Boltzmann factor with an inverse temperature
β = 1 it is straightforward to show that, under the BR+IIA approximation, the statistics of
the domain borders is approximately equivalent to a system with N particles which interact
according to the potential

VN(x1, . . . , xN) =
N∑

i=1

q(xi+1 − xi) −
N∑

i=1

ln[f (xi, xi+1)], (40)

where

f (xi, xi+1) = q2erfc

(√
π

2
(1 − q)s

)
+

(
2q(1 − q) +

π

2
(1 − q)3s

)
e− π

4 (1−q)2s2
, (41)

and s ≡ xi+1 − xi . Thus, the statistics of the domain edges of the gas and spin systems in their
crossover regimes is approximately equivalent to a statistical equilibrium system of particles
on a circle interacting through the nearest neighbor pair potential (40). Note that for q = 0,
equation (40) reduces to

VN(x1, . . . , xN) =
N∑

i=1

[
π

4

(
xi+1 − xi

)2

− ln

(
π

2
(xi+1 − xi)

)]
, (42)

as we can expect from [5]. Naturally, for q = 1 the interaction potential is a constant and the
interaction force between domain edges vanishes.

In the crossover between order and disorder, all systems lose their level repulsion
properties, i.e., the correlations between domains/particles decrease. In the PCRW, the
correlations between particles arise from the coalescence reaction for k > 0, in the gas
case, correlations arise from the mutual obstruction of particles for γ < 1. For the spin
system, taking E = 1 and T = 1, the crossover depends only on J and the correlations arise
for J > 0.

The gas and spin systems have a similar statistical behavior in the crossover between
organized and disorganized states but 〈S(t)〉 is very different in the two cases. The metastable
regions that we found in the spin system are not present in the gas system nor in the PCRW.
In fact metastable regions are not predicted by the macroscopic dynamical rules used in [12].
In the PCRW, there is a time τ1 when the interaction goes unnoticed which depends on the
parameter k. In the gas and spin systems it seems that this time does not depend on the
parameters γ and J respectively.

Finally, for the PCRW, we found that the parameter q ≡ q(τ, k), which characterizes
the crossover, can be scaled in a function of a single argument τ̃ by making the change of
variable τ̃ = τk2/(1 − k)2. The scaling factor is proportional to the crossover time between
the intermediate regime and the long-time regime, τ2.
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[5] González D L and Téllez G 2007 Statistical behavior of domain systems Phys. Rev. E 76 011126
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